Exercice N°413 :

Astuces Exercices Maths - Pantai Losari - Makassar

Exercice N°413 :

On souhaite comparer deux placements :
– placement A : dépôt initial de 500 euros et un versement mensuel de 10 euros ;
– placement B : dépôt initial de 400 euros et un versement mensuel de 5 % du capital placé.

On note an le capital en euros, obtenu par le placement A, et on note bn le capital en euros, obtenu par le placement B, après n mois de versement.

Ainsi a0 = 500 et b0 = 400.

1) Calculer a1 et a2. Lis la suite »

Ecris le premier commentaire

Exercice N°361 :

Makassar, Fort Rotterdam, Astuces Exercices Maths

Exercice N°361 :

1) ln(32) − ln(3) = ?

2) L’équation ln(x2 + x) − ln(x) = ln(2)
a pour ensemble solution ?

3) L’inéquation ln(1 + ex) ≥ 1
a pour ensemble solution ? Lis la suite »

Ecris le premier commentaire

Exercice N°569 :

Pierre et Élodie débutent dans une entreprise au 1er janvier.

Le salaire mensuel de Pierre est de 1500€, et il est prévu dans son contrat une augmentation mensuelle de 7€ à partir du 2ème mois.

Le salaire mensuel de Élodie est de 1200€, et il est prévu dans son contrat une augmentation mensuelle de 5% à partir du 2ème mois.

On note :

a0 le salaire d’embauche de Pierre et an son salaire au bout du n-ième mois pour n supérieur ou égal à zéro.

b0 le salaire d’embauche de Élodie et bn son salaire au bout du n-ième mois pour n supérieur ou égal à zéro.

1) Exprimer an+1 en fonction de an.

2) En déduire la nature de la suite (an).

3) Déterminer l’expression de an en fonction de n.

4) Exprimer bn+1 en fonction de bn.

5) En déduire la nature de la suite (bn).

6) Déterminer l’expression de bn en fonction de n.

7) Calculer a3 et b3.

8) Donner a10 et b10.

9) En utilisant la calculatrice, déterminer à partir de quel mois Élodie sera mieux payée que Pierre.
Expliquer la démarche.

Bon courage,
Sylvain

astuces exercices maths

Exercice précédent : Dérivation – Nombre dérivé, fonctions, tangentes – Première S

2 commentaires

Corrigé N°210 :

Exercice : Suites – Arithmétique, géométrique, algorithme – Terminale ES

1) (un) arithmétique de raison 6000 et expression :

Rédaction :

Au début du compte U, celui-ci est vide. Chaque année, l’épargnant y ajoute 6000 euros pour obtenir le solde l’année suivante. D’une année sur l’autre, on a donc un+1 = un + 6000.
(un) est donc une suite arithmétique de raison 6000 et son premier terme est 0.
Comme la suite est arithmétique :

suite arithmétique formule explicite

On commence à u0 = 0 et r = 6000.
Donc pour tout n, un = 0 + 6000 × (n – 0)
= 6000n.

2) Expliquer in :

Chaque année n, le client ajoute 6000 à son compte en banque.
A la fin de la première année, il y a donc u1 = 6000 euros dans son compte. Comme les intérêts sont de 5%,
cela fait i1 = 5/100 × u1
= 0,05 × u1.

L’année 2, le client ajoute 6000€ à son compte, il y a donc
u2 = u1 + 6000 dans le compte.
Pas d’intérêts car ceux-ci sont dans un compte à part.
A la fin de l’année, les intérêts de 5% sont donc pris sur u2 qu’on ajoute à ceux d’avant, soit :
i2 = i1 + 0,05 × u2
= 0,05 × u1 + 0,05 × u2
= 0,05 × (u1 + u2).

L’année 3, le client ajoute 6000€ à son compte, il y a donc
u3 = u2 + 6000.
Pas d’intérêts car ceux-ci sont dans un compte à part.
A la fin de l’année, les intérêts de 5% sont donc pris sur u3, soit :
i3 = 0,05 × u3 + i2
= 0,05 × u3 + × (u1 + u2)
= 0,05*(u1 + u2 + u3).

Et ainsi de suite…..

L’année n, le client ajoute 6000€ à son compte, il y a donc
un = un-1 + 6000.
Pas d’intérêts car ceux-ci sont dans un compte à part.
A la fin de l’année, les intérêts de 5% sont donc pris sur un, soit :
in = 0,05 × un + in-1
= 0,05 × un + 0,05 × (u1 + u2 + u3 + … + un-1)
= 0,05 × (u1 + u2 + u3 + … + un-1 + un)

Donc in = 0,05 × (6000 + 6000 × 2 + 6000 × 3 + … + 6000 × n).
Je factorise par 6000 :
in = 0,05 × (6000(1 + 2 + 3 + … + n))
= 300 × (1 + 2 + 3 + … + n).

Or d’après le cours :

somme arithmétique suite

donc in = 300 × n(n+1)/2
= 150n(n+1).

3) vn+1 et vn :

Rédaction :

L’année suivante, pour calculer vn+1, on prend le solde de l’année précédente vn. Sur ces vn euros, on gagne 4 pourcents d’intérêts. Du coup, le solde provenant de vn subit une augmentation de 4 pourcent : on multiplie donc vn par (1 + 4/100) = 1,04.
De plus, l’épargnant ajoute 6000 euros dans l’année. A la fin de l’année, les intérêts de 4 pourcents sont donc comptabilisés sur ces 6000 soit 6000 × 1.04 = 6240.
Du coup, vn+1 est la somme de ces deux montants.
vn+1 = 1.04vn + 6240.

wn = vn + 156000
4) Mq (wn) géométrique :

Rédaction :

Pour tout n, wn+1 = vn+1 + 156000
= 1.04vn + 6240 + 156000
= 1.04vn + 162240
= 1.04 × (vn + 162240/1.04)
= 1.04 × (vn + 156000)
= 1.04 × wn.

Donc (wn) est une suite géométrique de raison 1.04 et de première terme
w0 = v0 + 156000
= 0 + 156000 = 156000.

5) Expression de wn et vn :

Rédaction :

La formule explicite d’une suite géométrique est :

formule explicite suite géométrique

Du coup, wn = w0 × 1.04n-0
= 156000 × 1.04n.

D’après les données de l’exercice, wn = vn + 156000.
Donc vn = wn – 156000
= 156000 × 1.04n – 156000.

6) Intérêts jn du placement V :

Rédaction :

Les intérêts du placement V sont la différence entre le solde total et l’argent apporté par l’épargnant qui vaut 6000n car il apporte 6000 euros par an sur n années.

Donc jn = vn – 6000n
= 156000 × 1.04n – 156000 – 6000n.

7) Comparer i10 et j10 :

Rédaction :

i10 = 150 × 10 × (10+1)
= 150 × 11 = 16500 euros.
j10 = 156000 × 1.0410 – 156000 – 6000 × 10
= 14918.11 euros.

Sur 10 ans, il faut choisir le placement U car i10 > j10.

8) Pour un placement sur 20 ans :

Rédaction :

On calcule pour n = 20.
i20 = 150 × 20 × (20+1)
= 3000 × 21 = 63000 euros.
j20 = 156000 × 1.0420 – 156000 – 6000 × 20
= 65815.21 euros.

Sur 20 ans, il faut choisir le placement V car i20 < j20

9) Comment interpréter ce résultat de l’algorithme ?

Rédaction :

Dans le test du TantQue, la condition est que l’algorithme continue de tourner tant que les intérêts de V sont inférieurs ou égaux aux intérêts de U
(on reconnait jn ≤ in).
Du coup, la boucle va s’arrêter dès que les intérêts totaux de V vont strictement dépasser ceux de U. C’est le résultat voulu.
L’algorithme retourne N, c’est-à-dire le nombre d’étapes ou années quand le placement V devient plus intéressant que le placement U.
Il retourne N = 18, donc le placement V devient plus intéressant à partir d’un placement de 18 ans.

Bonne compréhension,
Sylvain

astuces exercices maths corrigé

Corrigé précédent : Corrigé N°337 – Exponentielle, convexité, variations – Terminale ES

Ecris le premier commentaire

Corrigé N°170 :

Exercice : Probabilités – Conditionnelles, loi binômiale, suite – Terminale S

1) P(boules rouges) :

Rédaction :

On a 4 chances sur 6 d’obtenir une rouge au premier tirage (et 2 chances sur 6 d’avoir une noire).
Si on a une rouge et qu’on la remet, on obtient les mêmes chances pour le second tirage.
Par contre, si on a une noire et qu’on ne la remet pas, on aura 4 chances sur 5 d’avoir une rouge et 1 chance sur 5 d’avoir une noire.

J’obtiens l’arbre suivant :
arbre probabilité tirage urne

Les branches de droites forment la colonne des « sachants ».
Les probabilités tout à droite sont les « inter ».

P(boules rouges) = P(R1 inter R2)
= P(R1) × P(R2 sachant R1)
= 4/6 × 4/6
= 2/3 × 2/3
= 4/9

2) P(seconde boule noire) :

Rédaction :

P(seconde boule noire) = P(N2)
On retrouve N2 deux fois sur la colonne de droite donc :

R1 et N1 forment une partition de Ω.
D’après la Formule des Probabilités Totales,
P(N2) = P(R1 inter N2) + P(N1 inter N2)
= 4/6 × 2/6 + 2/6 × 1/5
= 2/3 × 1/3 + 1/3 × 1/5
= 2/9 + 1/15
= 10/45 + 3/45
= 13/45

3) P(première boule rouge sachant seconde noire) :

Rédaction :

P(première boule rouge sachant seconde noire) = P(R1 sachant N2)
= P(R1 inter N2)/P(N2)
= (4/6)/(13/45)
= 4/6 × 45/13
= 4/2 × 15/13 (en simplifiant par 3 en haut et en bas)
= 2×15/13
= 30/13

4) Expression de p en fonction de n :

Rédaction :

p est la probabilité de succès d’une épreuve.
Le succès est d’obtenir une boule rouge lors du tirage.
Il y a 4 boules rouges et n boules noires, soit (4+n) boules au total.
Comme les boules sont indiscernables au toucher, il y a équiprobabilité.
La probabilité d’obtenir une boule rouge (le succès) est donc le nombre de cas favorables divisé par le nombre total de cas.
Soit p = 4/(4 + n)

5) P(l’une au moins des quatre boules tirées soit noire) :

Rédaction :

On a du « au moins une », on doit donc raisonner en contraire.
Le contraire de « l’une au moins des quatre boules tirées soit noire » est « toutes les boules sont rouges » donc :

qn = P(l’une au moins des quatre boules tirées soit noire)
= 1 – P(X = 4)
= 1 – (Combinaison(n ; k) × pk × (1 – p)n-k)
= 1 – (Combinaison(4 ; 4) × p4 × (1 – p)4-4)
= 1 – (1 × p4 × (1 – p)0)
= 1 – (p4 × 1)
= 1 – p4
= 1 – (4/(4 + n))4

6) Plus petit entier naturel n, qn ≥ 0,9999 :

Rédaction :

qn ≥ 0,9999
⇔ 1 – (4/(4 + n))4 ≥ 0,9999
⇔ – (4/(4 + n))4 ≥ 0,9999 – 1
⇔ – (4/(4 + n))4 ≥ -0,0001
⇔ (4/(4 + n))4 ≤ 0,0001
⇔ (4/(4 + n)) ≤ 0,0001(1/4)
Comme tout est positif là, on enlève le puissance 4 à gauche, en faisant puissance 1/4 à droite.
4/(4 + n) ≤ 0,1
⇔ 4 ≤ 0,1 × (4 + n)
⇔ 4/0,1 ≤ 4 + n
⇔ 40 – 4 ≤ n
⇔ 36 ≤ n
⇔ n ≥ 36

36 est le plus petit entier naturel tel que qn ≥ 0,9999

Bonne compréhension,
Sylvain

astuces exercices maths corrigé

Corrigé précédent : Corrigé N°192 – Suites, limite, variation, algorithme – Terminale S

Ecris le premier commentaire