Corrigé N°306 :

Exercice : Convexité – Fonction, courbe, dérivée, inflexion – Terminale ES

1) f ‘(x) = 0 par lecture graphique et variation de f :

Rédaction :

La courbe représentée est celle de f ‘ (et non celle de f, attention !).
Pour savoir quand f ‘(x) = 0, il faut regarder quand la courbe de f ‘ coupe l’axe des abscisses.
On voit que la courbe coupe l’axe des abscisses quand x = -2.
Quand x < -2, la courbe de f ' est en dessous de l'axe des abscisse donc f '(x) < 0. Quand x > -2, la courbe de f ‘ est en dessous de l’axe des abscisse donc f ‘(x) > 0.

Pour obtenir les variations de f, faisons donc le tableau de signe de f ‘(x) avec ces informations.

signe fonction dérivée  variation

2) Variations de f ‘ et signe de f ‘ ‘(x) :

Rédaction :

Pour avoir les variations de f ‘ avec le graphique, on regarde quand sa courbe monte (soit f ‘ croissante) et quand sa courbe descend (soit f ‘ décroissante).
On peut voir que f ‘ est croissante jusqu’à x = -1 et que f ‘ est décroissante ensuite. Soit le tableau de variation suivant :

variation dérivé signe dérivée seconde

Le signe de f ‘ ‘(x) dépend directement de la variation de f ‘ comme indiqué dans le tableau ci-dessus.

3) f convexe et concave :

Rédaction :

Pour déterminer la convexité de f, on doit déterminer le signe de f ‘ ‘(x) (que l’on a déjà ici) et faire une ligne en dessous avec les mots concaves / convexe / point d’inflexion.

signe dérivée seconde convexité fonction

4) f ‘ ‘(0) :

Rédaction :

La seule donnée que l’on a dans l’énoncé, c’est la courbe de f ‘. Or, les f ‘ ‘(x) sont les nombres dérivées de la fonction f ‘ : ce sont donc les coefficients directeurs des tangentes à la courbe de f ‘.

Pour calculer f ‘ ‘(0), il faut donc tracer la tangente à la courbe de f’ au point d’abscisse 0 (c’est T).
Prenons deux points de T pour calculer le coefficient directeur qui est f ‘ ‘(0).

Par exemple A(0 ; 1) et B(2 ; 0).

On utilise la formule du coefficient directeur :

f ‘ ‘(0) = m = (0 – 1)/(2 – 0)
= –1/2

5) Courbes qui représente f et f ‘ ‘.

Rédaction :

Pour la courbe de f, d’après les tableaux, on sait que la fonction est décroissante jusqu’à -2 puis croissante. De plus, il y a un point d’inflexion en -1. C’est clairement la courbe C1 qui convient car on voit que la pente diminue (les tangentes sont au-dessus) à partir de l’abscisse -1.

Pour la courbe de f’, d’après les tableaux, on sait que
f ‘ ‘(0) = –1/2 et que f ‘ ‘(x) est positif avant -1 puis négatif après -1. C’est clairement C3 qui convient, elle coupe même l’axe des ordonnées en -0.5.

6) Point d’inflexion de Cf et équation de la tangente :

Rédaction :

On a vu dans le tableau de la convexité de f que le point d’inflexion est atteint en x = -1. Le seul moyen de connaître f(-1) ici est la courbe C1.
Donc f(-1) = 0 car la courbe coupe l’axe des abscisses en x = -1.

L’équation d’une tangente au point d’abscisse a est :

equation tangente courbe fonction point abscisse a

Ici a = -1.

Donc y = f'(-1) × (x – (-1)) + f(-1)
y = 1.35 × (x + 1) + 0
y = 1.35x + 1.35.

1.35 est une valeur approchée avec la précision permise par le graphique de la courbe de f ‘. C’est l’image de -1 par f ‘.

Bonne compréhension,
Sylvain

astuces exercices maths corrigé

Corrigé précédent : Corrigé N°083 – Vecteurs, géométrie 2D, parallélogramme – Seconde

Ecris le premier commentaire

Corrigé N°331 :

Exercice : Exponentielle – Coûts, dérivée, inéquations, variation – Terminale ES

CT(x) = 2x2 + xe-2x + 3

1) Fonction coût marginal Cm :

Rédaction :

Pour avoir le coût marginal Cm(x), on fait la fonction dérivé du coût total CT(x).

CT(x) = 2x2 + u(x) × v(x)
avec u(x) = x,
donc u'(x) = 1,
avec v(x) = e-2x + 3,
donc v'(x) = -2 × e-2x + 3 avec la dérivée de l’exponentielle :

fonction dérivée exponentielle

Donc C’T(x) = 2 × 2x + (u'(x) × v(x) + u(x) × v'(x))
= 4x + 1 × e-2x + 3 + x × (-2 × e-2x + 3)
On obtient en factorisant par l’exponentielle :
Cm(x) = 4x + (1 – 2x) × e-2x + 3

2) Coût marginal pour 150 articles :

Rédaction :

On calcule Cm(1.5) = 4 × 1.5 + (1 – 2 × 1.5) × e-2 × 1.5 + 3
= 6 – 2 × e-2 × 1.5 + 3
= 6 – 2 × e0
= 6 – 2 × 1
= 4 milliers d’euros.

CM(x) = CT(x)/x
3) Expression de CM(x) :

Rédaction :

CM(x) = (2x2 + xe-2x + 3)/x
= (x × [2x + e-2x + 3])/x
(en factorisant par x au numérateur)
= 2x + e-2x + 3
(en simplifiant x/x = 1).

4) Déterminer C’M(x) :

Rédaction :

CM(x) = 2x + e-2x + 3
On utilise à nouveau la formule de la dérivée de l’exponentielle vue au-dessus.
C’M(x) = 2 + (-2) × e-2x + 3
= 2 – 2e-2x + 3
= 2 × (1 – e-2x + 3)
(comme je vois 2 et 2, je factorise par 2)

5) Résoudre l’équation 1 – e-2x + 3 = 0 :

Rédaction :

1 – e-2x + 3 = 0
⇔ 1 = e-2x + 3
⇔ e0 = e-2x + 3
⇔ 0 = -2x + 3
⇔ 2x = 3
⇔ x = 3/2

S = {3/2}

6) Résoudre l’équation 1 – e-2x + 3 > 0 :

Rédaction :

1 – e-2x + 3 > 0 (expression positive)
⇔ 1 > e-2x + 3
⇔ e0 > e-2x + 3
⇔ 0 > -2x + 3
(car exp est strictement croissante, on ne change pas le sens de l’inégalité)
⇔ 2x > 3
⇔ x > 3/2
(x à droite de 3/2)

S = ]3/2 ; +∞[

7) Variation de CM :

Rédaction :

Pour obtenir les variations de CM, il nous faut le signe de C’M(x) qui est un produit. On fait le tableau suivant :

tableau signe dérivée variation fonction

8) Production q quand l’entreprise a un coût moyen minimal et coût :

Rédaction :

D’après le tableau de variation de CM, on voit que le coût moyen est minimal pour une quantité de 1.5 centaines d’articles.

Donc CM(1.5) = 2 × 1.5 + e-2 × 1.5 + 3
= 3 + e0
= 3 + 1 = 4.

Le coût moyen minimal est de 4 milliers d’euros.

R(x) = 7x,
B(x) = R(x) − CT(x).
Par lecture graphique déterminer :

9) Intervalle avec rendement marginal est croissant (coût marginal est décroissant) :

Rédaction :

Le coût marginal est décroissant, soit Cm décroissante. Or Cm est la dérivée de CT donc cela équivaut à C’T décroissante.
Or C’T décroissante
⇔ C ‘ ‘T(x) négatif
⇔ CT concave
⇔ C’est quand les tangentes à la courbe sont au-dessus de cette même courbe, c’est-à-dire avant le point d’inflexion de la courbe qui est proche du point d’abscisse 0.7.
L’intervalle de rendement marginal croissant est de [0 ; 0.7].

10) Coût moyen minimal :

Rédaction :

Le coût moyen est atteint en x = 1.5, donc on regarde le coût total qui vaut 6.
Pour obtenir ce coût moyen, on peut rediviser ce coût total par la quantité.
6/1.5 = 4.
On retrouve le coût moyen calculé plus haut.

11) Intervalle de x avec bénéfice positif :

Rédaction :

Le bénéfice est positif quand la recette est supérieure au coût. Il faut déterminer les abscisses des points des courbes quand la droite des recettes est au-dessus de la droite du coût.
On remarque que le bénéfice est positif pour des quantités allant de 0.6 à 3.5 centaines d’articles.

12) Production x0 avec bénéfice maximal :

Rédaction :

Pour obtenir le x0 avec le bénéfice maximal, il faut regarder à quel endroit l’écart entre la droite de la recette et la courbe du coût est le plus grand. D’après le graphique, je dirais que x0 = 2.2 centaines d’articles.

13) Avec calculatrice, intervalle (à un article près) pour avoir un bénéfice positif :

Rédaction :

Pour cela, on a besoin de la formule du bénéfice B(x) qui est égale à
R(x) – CT(x)
= 7x – (2x2 + xe-2x + 3)

Je rentre cette formule dans le tableur de la calculatrice.

D’abord de 0 à 1, ensuite de 3 à 4 car nous avions vu dans une question précédente que les bornes étaient environ de 0.6 et de 3.5.

Je commence par mettre le pas (step) à 0.1, la fonction B(x) change de signe entre 0.6 et 0.7, puis entre 3.4 et 3.5.

Puis j’affine le pas au centième pour arriver à l’article près (x étant en centaines d’articles). On a :

B(0.62) = -0.0325 (au dix-millième près)
B(0.63) = 0.0269 (au dix-millième près)

B(3.49) = 0.0046 (au dix-millième près)
B(3.50) = -0.0064 (au dix-millième près)

On conserve les valeurs où les images sont positives.
Donc l’entreprise fait un bénéfice positif
sur l’intervalle [0.63 ; 3.49].

Bonne compréhension,
Sylvain

astuces exercices maths corrigé

Corrigé précédent : Corrigé N°316 – Fonction, rationnelle, affine, graphique – Première ES

Ecris le premier commentaire

Corrigé N°305 :

Exercice : Convexité – Fonction, pourcentage, inflexion, tangente – Terminale ES

f(x) = −0,04x3 + 0,68x2 − 0,06x + 51,4

1) Valeur estimée du taux en 2009 :

Rédaction :

La petite croix sur le graphique au dessus de l’abscisse 9 correspond à 2009, donc on calcule f(9).
f(9) = −0,04 × 93 + 0,68 × 92 − 0,06 × 9 + 51,4
= 76.78

2) Pourcentage d’erreur :

Rédaction :

Pour calculer un pourcentage d’erreur, on utilise la formule suivante :
[(ValeurMesurée – ValeurEstimée)/(ValeurMesurée)] × 100
= [(75.7 – 76.78)/(75.7)] × 100
= [(– 1.08)/(75.7)] × 100
= -1.427 environ.

Le pourcentage d’erreur est de 1.43%.

3) f'(x) et tableau de variations de f :

Rédaction :

f(x) = −0,04x3 + 0,68x2 − 0,06x + 51,4 donc

f'(x) = −0,04 × 3x2 + 0,68 × 2x − 0,06 × 1 + 0
= −0,12x2 + 1,36x – 0,06

Pour obtenir les variations de f, on a besoin du signe de f'(x).

C’est un polynôme du second degré.
Δ = b2 – 4ac
= 1.362 – 4 × (-0,12) × (-0,06)
= 1.8496 – 0.0288
= 1.8208 > 0
donc ce polynôme a deux racines réelles.

x1 = (-b – √Δ)/(2a)
= (-1.36 – √1.8208)/(2(−0,12))
= 11.289 environ

x2 = (-b + √Δ)/(2a)
= (-1.36 + √1.8208)/(2(−0,12))
= 0.0443 environ

On obtient le tableau de signe de f'(x) et de variation de f suivant :

signe dérivée second degré variation fonction

Je vais de -∞ à +∞ pour faire le signe du polynôme du second degré, puis je coupe à 0 et 11 pour coller au domaine de définition. Je calcule aussi f(0), le minimum, puis f(11).

4) f ‘ ‘(x) et convexité de f :

Rédaction :

f'(x) = −0,12x2 + 1,36x – 0,06 donc

f’ ‘(x) = −0,12 × 2x + 1.36 + 0
= -0.24x + 1.36.


Pour obtenir la convexité de f, on a besoin du signe de f’ ‘(x) (on peut toujours intercaler les variations de f’).

On met un + dans la ligne de -0.24x + 1.36
⇔ -0.24x + 1.36 ≥ 0
⇔ -0.24x ≥ -1.36
-0.24x/(-0.24)-1.36/(-0.24)
⇔ x ≤ 17/3
à gauche de 17/3

On obtient le tableau de signe de f’ ‘(x), de variation de f’, de convexité de f suivant :
convexité fonction signe dérivée seconde variation dérivée

5) Point d’inflexion et équation de la tangente :

Rédaction :

D’après le tableau de convexité de f, f passe de convexe à concave au point d’abscisse 17/3. Donc f admet un point d’inflexion en cette abscisse.

L’équation d’une tangente à courbe Cf au point d’abscisse a est :

equation tangente courbe fonction point abscisse a

Je vais calculer les valeurs approchées de f(17/3) et de f ‘(17/3).

f(17/3) = 65.617

f ‘(17/3) = 3.793

Donc y = 3.793 × (x – 17/3) + 65.617
y = 3.793x – 3.793 × 17/3 + 65.617
y = 3.793x + 44.123

C’est l’équation de la tangente au point d’inflexion.

6) Position relative de cette tangente avec C :

Rédaction :

Comme la fonction passe de convexe à concave en ce point d’inflexion, cette tangente est en dessous de C avant 17/3, puis au dessus de C après 17/3.

Je trace ci-dessous la courbe et la tangente pour x allant de 0 à 11 (carreaux de 1 en 1) et y allant de 0 à 90 (carreaux de 10 en 10).

courbe tangente point inflexion

Graphsketch.com

7) Diminution du rythme de croissance du taux d’endettement :

Rédaction :

C’est quand la fonction passe de convexe à concave, c’est à dire au niveau du point d’inflexion, que le rythme de croissance commence à diminuer. Pour 17/3, soit 5+(2/3). C’est à partir des deux-tiers de 2005 que ce rythme diminue.

Bonne compréhension,
Sylvain

astuces exercices maths corrigé

Corrigé précédent : Primitives – Aires, courbes, intégrales, économie – Terminale ES

Ecris le premier commentaire

Corrigé N°473 :

Exercice : Primitives – Aires, courbes, intégrales, économie – Terminale ES

1) Interprétation économique du point D de g :

Rédaction :

On peut lire que les coordonnées du point D sont (0.5 ; 0.15). En abscisse à gauche, c’est le pourcentage des gens les plus pauvres. En ordonnée en dessous, c’est la répartition des richesses.
On peut affirmer que les 50% des gens les plus pauvres du pays 2 détiennent 15% des richesses du pays 2.

On donne
f(x) = 0.5x3 + 0.5x
et on admet que est positive sur [0 ; 1]

2) Aire A1 du domaine délimité par la courbe de f, l’axe des abscisses et les droites d’équations x = 0 et x = 1 :

Rédaction :

Cette aire est [de 0 à 1]f(x)dx en U.A.
Pour la calculer, il faut d’abord déterminer une primitive F(x) de f(x).

La primitive « simple » de x3 est x4/4.

La primitive « simple » de x est x2/2.

Donc F(x) = 0.5 × x4/4 + 0.5 × x2/2
= 0.125x4 0.25x2.

A1 = [de 0 à 1]f(x)dx
= F(1) – ( F(0) )
= 0.125 × 14 0.25 × 12 – (0.125 × 04 0.25 × 02)
= 0.125 + 0.25 – (0)
= 0.375

3) Aire de A :

Rédaction :

Cette aire se situe entre la droite d’équation y = x (au-dessus) et la courbe Cf (en dessous). Pour calculer cette aire, on fait :
aire_sous_la_droite – aire_sous_la_courbe
= 1/2 – A1
= 0.5 – 0.375
= 0.125.

L’aire sous la droite y = x, allant de x = 0 à x = 1 vaut 1/2 car c’est un triangle rectangle de base 1 et de hauteur 1 (un demi-carré). C’est la formule (Base × Hauteur)/2.

G2 = 4/15.
4) Coefficient de Gini G1 et le système le plus égalitaire :

Rédaction :

G1 = 2 × A1
= 2 × 0.125
= 0.25

G2 = 4/15
= 0.267 environ.

G1 < G2 donc le pays 1 a un système + égalitaire que le pays 2.

5) Résultat à l’avance sur le graphique :

Rédaction :

La courbe Cf est au-dessus de la courbe Cg donc plus près de la droite y = x qui représente un système idéalement égalitaire.
C’est bien le pays lié à f, le premier.

Bonne compréhension,
Sylvain

astuces exercices maths corrigé

Corrigé précédent : Corrigé N°244 – Limites, fonctions, quotient, sinus – Terminale S

Ecris le premier commentaire

Corrigé N°210 :

Exercice : Suites – Arithmétique, géométrique, algorithme – Terminale ES

1) (un) arithmétique de raison 6000 et expression :

Rédaction :

Au début du compte U, celui-ci est vide. Chaque année, l’épargnant y ajoute 6000 euros pour obtenir le solde l’année suivante. D’une année sur l’autre, on a donc un+1 = un + 6000.
(un) est donc une suite arithmétique de raison 6000 et son premier terme est 0.
Comme la suite est arithmétique :

suite arithmétique formule explicite

On commence à u0 = 0 et r = 6000.
Donc pour tout n, un = 0 + 6000 × (n – 0)
= 6000n.

2) Expliquer in :

Chaque année n, le client ajoute 6000 à son compte en banque.
A la fin de la première année, il y a donc u1 = 6000 euros dans son compte. Comme les intérêts sont de 5%,
cela fait i1 = 5/100 × u1
= 0,05 × u1.

L’année 2, le client ajoute 6000€ à son compte, il y a donc
u2 = u1 + 6000 dans le compte.
Pas d’intérêts car ceux-ci sont dans un compte à part.
A la fin de l’année, les intérêts de 5% sont donc pris sur u2 qu’on ajoute à ceux d’avant, soit :
i2 = i1 + 0,05 × u2
= 0,05 × u1 + 0,05 × u2
= 0,05 × (u1 + u2).

L’année 3, le client ajoute 6000€ à son compte, il y a donc
u3 = u2 + 6000.
Pas d’intérêts car ceux-ci sont dans un compte à part.
A la fin de l’année, les intérêts de 5% sont donc pris sur u3, soit :
i3 = 0,05 × u3 + i2
= 0,05 × u3 + × (u1 + u2)
= 0,05*(u1 + u2 + u3).

Et ainsi de suite…..

L’année n, le client ajoute 6000€ à son compte, il y a donc
un = un-1 + 6000.
Pas d’intérêts car ceux-ci sont dans un compte à part.
A la fin de l’année, les intérêts de 5% sont donc pris sur un, soit :
in = 0,05 × un + in-1
= 0,05 × un + 0,05 × (u1 + u2 + u3 + … + un-1)
= 0,05 × (u1 + u2 + u3 + … + un-1 + un)

Donc in = 0,05 × (6000 + 6000 × 2 + 6000 × 3 + … + 6000 × n).
Je factorise par 6000 :
in = 0,05 × (6000(1 + 2 + 3 + … + n))
= 300 × (1 + 2 + 3 + … + n).

Or d’après le cours :

somme arithmétique suite

donc in = 300 × n(n+1)/2
= 150n(n+1).

3) vn+1 et vn :

Rédaction :

L’année suivante, pour calculer vn+1, on prend le solde de l’année précédente vn. Sur ces vn euros, on gagne 4 pourcents d’intérêts. Du coup, le solde provenant de vn subit une augmentation de 4 pourcent : on multiplie donc vn par (1 + 4/100) = 1,04.
De plus, l’épargnant ajoute 6000 euros dans l’année. A la fin de l’année, les intérêts de 4 pourcents sont donc comptabilisés sur ces 6000 soit 6000 × 1.04 = 6240.
Du coup, vn+1 est la somme de ces deux montants.
vn+1 = 1.04vn + 6240.

wn = vn + 156000
4) Mq (wn) géométrique :

Rédaction :

Pour tout n, wn+1 = vn+1 + 156000
= 1.04vn + 6240 + 156000
= 1.04vn + 162240
= 1.04 × (vn + 162240/1.04)
= 1.04 × (vn + 156000)
= 1.04 × wn.

Donc (wn) est une suite géométrique de raison 1.04 et de première terme
w0 = v0 + 156000
= 0 + 156000 = 156000.

5) Expression de wn et vn :

Rédaction :

La formule explicite d’une suite géométrique est :

formule explicite suite géométrique

Du coup, wn = w0 × 1.04n-0
= 156000 × 1.04n.

D’après les données de l’exercice, wn = vn + 156000.
Donc vn = wn – 156000
= 156000 × 1.04n – 156000.

6) Intérêts jn du placement V :

Rédaction :

Les intérêts du placement V sont la différence entre le solde total et l’argent apporté par l’épargnant qui vaut 6000n car il apporte 6000 euros par an sur n années.

Donc jn = vn – 6000n
= 156000 × 1.04n – 156000 – 6000n.

7) Comparer i10 et j10 :

Rédaction :

i10 = 150 × 10 × (10+1)
= 150 × 11 = 16500 euros.
j10 = 156000 × 1.0410 – 156000 – 6000 × 10
= 14918.11 euros.

Sur 10 ans, il faut choisir le placement U car i10 > j10.

8) Pour un placement sur 20 ans :

Rédaction :

On calcule pour n = 20.
i20 = 150 × 20 × (20+1)
= 3000 × 21 = 63000 euros.
j20 = 156000 × 1.0420 – 156000 – 6000 × 20
= 65815.21 euros.

Sur 20 ans, il faut choisir le placement V car i20 < j20

9) Comment interpréter ce résultat de l’algorithme ?

Rédaction :

Dans le test du TantQue, la condition est que l’algorithme continue de tourner tant que les intérêts de V sont inférieurs ou égaux aux intérêts de U
(on reconnait jn ≤ in).
Du coup, la boucle va s’arrêter dès que les intérêts totaux de V vont strictement dépasser ceux de U. C’est le résultat voulu.
L’algorithme retourne N, c’est-à-dire le nombre d’étapes ou années quand le placement V devient plus intéressant que le placement U.
Il retourne N = 18, donc le placement V devient plus intéressant à partir d’un placement de 18 ans.

Bonne compréhension,
Sylvain

astuces exercices maths corrigé

Corrigé précédent : Corrigé N°337 – Exponentielle, convexité, variations – Terminale ES

Ecris le premier commentaire